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Description of Specifications by Means of Probability
Distributions in Small Volumes under Condition
of Very Weak Positivity
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The problem of description of specifications by means of probability distribu-
tions in small volumes with infinite boundary conditions is considered. The
description of specifications by means of n-specifications (consistent systems of
probability distributions in volumes of cardinality bounded by n with infinite
boundary conditions) is established under the condition of very weak positiv-
ity. Particular attention is paid to the most important case n=1 which requires
special considerations.
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1. INTRODUCTION

The notion of specification—consistent system of probability distributions
in finite volumes with infinite boundary conditions—is a basic one in
the theory of random fields and in mathematical statistical physics. The
importance of this notion is that the description of random fields in terms
of specifications turned out to be a powerful tool for the development
of the theory of random fields (see, for example, ref. 1). Besides, the
specifications admitting Gibbsian description represent the mathematical
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63177 Aubière Cedex, France; e-mail: Serguei.Dachian@math.univ-bpclermont.fr

2Institute of Mathematics, National Academy of Sciences of Armenia, 24-b,
Av. M. Bagramian, 375019 Yerevan, Armenia; e-mail: nahapet@instmath.sci.am

281

0022-4715/04/1000-0281/0 © 2004 Springer Science+Business Media, Inc.



282 Dachian and Nahapetian

background for the study of systems of statistical physics. The problem
of Gibbsian description of specifications was a subject of consideration of
many authors (see, for example, refs. 2–5).

The theory of description of random fields by means of specifica-
tions was constructed by Dobrushin in his fundamental works (refs. 6–8).
Particularly, the conditions of existence and uniqueness of random fields
described by a given specification were obtained in ref. 6.

In the latter work, while commenting the uniqueness condition,
Dobrushin touched upon the problem of restoration of specifications by
means of their one-point elements. Several years ago, in a private con-
versation with one of the authors Dobrushin pointed out the importance
of a closely related problem: the problem of description of specifications
by means of consistent systems of one-point probability distributions with
infinite boundary conditions. However, at that time no consistency condi-
tions on one-point probability distributions were known.

These two problems of Dobrushin were solved by the authors in refs.
9 and 10 under the condition of weak positivity (as well as under the
condition of strict positivity). In particular, consistency conditions under
which a system of one-point probability distributions with infinite bound-
ary conditions describes a specification were established in ref. 10 under
the condition of weak positivity. There it was also shown that the weak
positivity condition is coordinating, that is, a specification is weakly posi-
tive if and only if its subsystem consisting of one-point elements is weakly
positive. It was equally proved that under the condition of weak positiv-
ity, the quasilocality property is heritable, that is, a weakly positive spec-
ification is quasilocal if and only if its subsystem consisting of one-point
elements is quasilocal.

Let us note here that the consistency conditions established in refs.
9 and 10 were mentioned as properties of strictly positive conditional
probabilities of Markov random fields in ref. 11. Note also that some
results concerning the problem of restoration of strictly positive spe-
cifications can be found in refs. 1 and 5. In ref. 12 the attempt to
solve the problems of restoration and description of specifications in
some non-positive cases was undertaken, but sufficiently full results were
obtained only in one-dimensional case and under more complicated
conditions.

In the present work the results of ref. 10 are extended to essentially
more general situation. First, instead of consistent systems of one-point
probability distributions with infinite boundary conditions we consider
more general systems: so-called n-specifications, that is, consistent sys-
tems of probability distributions in small volumes (volumes of cardinal-
ity bounded by n) with infinite boundary conditions. But the principal
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difference is that the results are obtained under so-called very weak pos-
itivity condition which is essentially weaker than the conditions used in
ref. 10.

Note that the results of the present work allow one to formulate the
condition of existence of random fields described by a given specification
in terms of the latter’s one-point elements only, that is, exactly in the same
terms as the well-known Dobrushin’s uniqueness condition. So, it becomes
possible to formulate the problem of description of random fields directly
in terms of 1-specifications.

Note in addition, that the results of the present work will be proba-
bly useful in the recently emerged theory of non-Gibbsian random fields
which are now intensively studied (see, for example, ref. 13).

Note finally, that the methods used in the present work are new and
considerably differ from those used in ref. 10.

2. PRELIMINARIES

We denote by Z
ν the ν-dimensional integer lattice and by E the set of

all finite subsets of Z
ν , that is, E={�⊂Z

ν : |�|<∞}, where |�| is the car-
dinality (the number of points) of the set �. For convenience of notations,
we will omit braces for one-point sets, that is, will write a instead of {a}.
For any n∈N∪∞={1,2, . . . ,∞} we equally denote En ={�∈E : |�|�n}.
Clearly, for n=∞ we have E∞ =E.

Let (X,F) be some measurable state space. Usually X is assumed to
be endowed with some topology T, and F is assumed to be the Borel
σ -algebra for this topology. In the present work we concentrate on the
case when X is finite, T is the discrete topology and F is the total
σ -algebra, that is, F=T= part(X).

For any T ⊂Z
ν we consider the space XT of all configurations on T .

For T =∅ we assume that X∅ ={∅}, where ∅ is understood as an empty
configuration. For any T ,S ⊂Z

ν such that T ⊂S and any configuration
x ={xt , t ∈S} on S we denote xT the subconfiguration (restriction) of x

on T defined by xT ={xt , t ∈T }. For any T ,S ⊂Z
ν such that T ∩S =∅ and

any configurations x on T and y on S we denote xy the concatenation of
x and y, that is, the configuration on T ∪S equal to x on T and to y on
S. For any a ∈X, T ⊂Z

ν and x ∈XT , the notation x ≡a will mean xt =a

for any t ∈T , and the notation x �a will mean xt =a for some t ∈T .
Let �∈E. We denote a probability distribution {P�(x), x ∈X�} on

X� by P�. Note that in the case �=∅ there exists only one probability
distribution defined by P∅(∅)=1. For any I ⊂� we denote (P�)

I
the
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restriction (or marginal distribution) of P� on I , defined by

(P�)
I
(x)=

∑
y∈X�\ I

P�(xy).

Finally, let us recall Dobrushin’s consistency condition and the notion
of specification, introduced in ref. 6.

Definition 1. Let �∈E. Any system {Qx
�, x ∈XZ

ν \�} of probabil-
ity distributions on X� indexed by infinite boundary conditions will be
called �-kernel and denoted by Q•

�.

Definition 2. Let �∈E and I ⊂�. We will say that a �-kernel Q•
�

is consistent in Dobrushin’s sense with an I -kernel Q•
I (and vice versa), if

Qx
�(xy)= (Qx

�)
�\ I

(x) Qxx
I (y)

for any x ∈X�\ I ,y ∈XI and x ∈XZ
ν \�.

Definition 3. A family {Q•
�,�∈E} of �-kernels indexed by �∈E

will be called specification, if Q•
� and Q•

I are consistent in Dobrushin’s
sense for any �∈E and I ⊂�.

The main goal of this work is the description of specifications by
means of probability distributions in small volumes with infinite boundary
conditions, more precisely, by means of n-specifications.

3. NOTION OF n-SPECIFICATION AND POSITIVITY POINTS

Recall that specifications are families of �-kernels in finite volumes.
Let us consider smaller systems: families of �-kernels in volumes with
bounded size.

Definition 4. Let n∈N. Any family {Q•
�,�∈En} of �-kernels

indexed by �∈En will be called n-system.

In order to describe specifications, n-systems must satisfy some con-
sistency conditions which should at least be properties of n-systems con-
tained in specifications. So, let us introduce the following notion of
n-specification.

Definition 5. Let n∈N \1. An n-system {Q•
�,�∈En} will be called

n-specification, if Q•
� and Q•

I are consistent in Dobrushin’s sense for any
�∈En and I ⊂�.
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Note that the n-systems contained in specifications are indeed n-spe-
cifications. Note also, that in Definitions 4 and 5 one can include the case
n=∞, and that ∞-specifications defined this way will be clearly nothing
else but specifications.

Remark equally, that we did not yet define the 1-specifications, which
would be the most interesting for our purpose, since they are the small-
est. Why we did not do it? The matter is that if we introduce the notion
of 1-specification in the way of Definition 5, then it would be degenerate,
since for 1-systems Dobrushin’s consistency conditions become identities.
So, in order to define the notion of 1-specification, it is necessary to find
some “internal consistency conditions” (that is, some relations between
one-point probabilities only), which should be properties of 1-systems con-
tained in specifications. Such properties are given in Theorem 8, but before
formulating it let us introduce the notion of positivity point, which will
play an important role all along this paper.

Definition 6. Let �∈E, let T ⊂Z
ν\� and x ∈XZ

ν \�\T , and let Q•
�

be a �-kernel. A configuration u∈X� is called positivity point (p.p.) of
Q•

� under boundary condition (b.c.) varying on T and equal to x outside, if
for any α ∈XT , we have Qxα

� (u)>0.

Let us formulate immediately one of the most important properties of
positivity points.

Theorem 7. Let J, I ∈E such that J ∩ I =∅, put �=J ∪ I , let
T ⊂Z

ν \� and x ∈XZ
ν \�\T , and let Q•

J , Q•
I and Q•

� be a J -kernel, an
I -kernel and a �-kernel. Suppose Q•

� is consistent in Dobrushin’s sense
both with Q•

J and Q•
I . If u is a p.p. of Q•

J under b.c. varying on I ∪T

and equal to x outside, v is a p.p. of Q•
I under b.c. varying on J ∪T and

equal to x outside, then the concatenation uv is a p.p. of Q•
� under b.c.

varying on T and equal to x outside.

This theorem will be proved in Section 6, as well as the following the-
orem presenting the above mentioned properties of 1-systems contained in
specifications.

Theorem 8. If QQQ={Q•
�,�∈E2} is 2-specification, then

Qxv
t (x) Qxx

s (y) Qxy
t (u) Qxu

s (v)= Qxu
s (y) Qxy

t (x) Qxx
s (v) Qxv

t (u)

for any t, s ∈Z
ν, x ∈Xt , y, v ∈Xsand x ∈XZ

ν \ t \ s ,

and for any p.p.uof Q•
t under b.c. varying on s and equal tox outside.

(1)
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Remarks: (1) This theorem remains valid if any one of x, y, u, v is
supposed to be a positivity point.

(2) In the formulation of the theorem we could take QQQ to be
n-specification for some n∈ (N \1)∪∞.

(3) In this theorem QQQ is arbitrary, and the conditions are imposed
on the arguments of the relation (1) only. A weaker version of the the-
orem was already established by the authors in ref. 10 under some addi-
tional conditions on QQQ. Note also, that it is not possible to obtain the
relation (1) without any condition at all. Indeed, as shows the following
example this relation may not hold in general.

Example 9. Let the state space X={0,1,2,3} and consider the
∞-system QQQ={Q•

�,�∈E} defined by

Qx
�(x)=




�{x≡0} if |�| �2

�{x=0} if x �0

1/5 if x ≡1 and x ∈{0,1,2}
2/5 if x ≡1 and x =3

1/4 if x 	�0 and x 	≡1 if |�|=1.

It is not difficult to verify that QQQ is a specification. Further, if for some
arbitrary t, s ∈Z

ν , we take x ∈XZ
ν \ s \ t such that x ≡1, and put x =2,

u=3, y =1 and v =2, the relation (1) will clearly fail.

Now, in view of Theorem 8 we can introduce the following notion of
1-specification.

Definition 10. A 1-system {Q•
�,�∈E1} is called 1-specification, if

Qxv
t (x) Qxx

s (y) Qxy
t (u) Qxu

s (v)= Qxu
s (y) Qxy

t (x) Qxx
s (v) Qxv

t (u)

for any t, s ∈Z
ν, x ∈Xt , y, v ∈Xs and x ∈XZ

ν \ t \ s ,

and for any p.p.uof Q•
t under b.c. varying on s and equal tox outside.

(2)

Note, that like the case n�2, the 1-systems contained in
specifications will be 1-specifications. So, for any n∈N, the restriction of a
specification on En is nothing but an n-specification. Description of speci-
fications by means of n-specifications is in some sense an inverse operation
to this restriction.
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4. PROBLEM OF DESCRIPTION OF SPECIFICATIONS BY MEANS

OF n-SPECIFICATIONS

The problems of this type was firstly considered by the authors in
refs. 9 and 10. In these works, the problem of description of specifications
by means of n-specifications was solved for n=1 under the condition of
“strict positivity”, as well as under the condition of “weak positivity”.

4.1. Strict Positivity

The strict positivity is the simplest positivity condition for n-systems.

Definition 11. Let n∈N∪∞. An n-system {Q•
�,�∈En} will be

called strictly positive, if for any �∈En each configuration x ∈X� is a p.p.
of Q•

� under b.c. varying on Z
ν \� and equal to ∅ outside.

Remark that Definition 11 simply means, that for any �∈En, any
x ∈X� and any x ∈XZ

ν \� we have Qx
�(x)>0.

The strictly positive specifications are widely studied and used in
mathematical statistical physics. For example, the specifications admitting
Gibbsian description with a real-valued potential are strictly positive.

Note also, that under the condition of strict positivity, the consistency
conditions (2) from Definition 10 of 1-specification become

Qxv
t (x) Qxx

s (y) Qxy
t (u) Qxu

s (v)= Qxu
s (y) Qxy

t (x) Qxx
s (v) Qxv

t (u)

for any t, s ∈Z
ν, x, u∈Xt , y, v ∈Xs and x ∈XZ

ν \ t \ s .

Let us now explain the nature and point out several consequences of
the problem of description of specifications by means of n-specifications
using as example the results obtained in refs. 9 and 10.

The main result is that any strictly positive 1-specification q describes
a specification, that is, there exists a unique specification containing q.

The second result is that the strict positivity condition is coordinating,
that is, a specification QQQ is strictly positive if and only if the 1-specifica-
tion contained in QQQ is strictly positive. Let us note here that the necessity
is trivial, and the sufficiency becomes evident in view of considerations of
the present work due to Theorem 7.

Note that these two results imply also that any strictly positive specifi-
cation QQQ can be restored by the 1-specification contained in it (that is, any
specification containing the same 1-specification is necessarily equal to QQQ)
and allow us to conclude that the description is a one-to-one correspon-
dence between strictly positive 1-specifications and strictly positive specifi-
cations.
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The third result is that under the condition of strict positivity the
quasilocality property is heritable, that is, a strictly positive specification QQQ
is quasilocal if and only if the 1-specification contained in QQQ is quasilocal.

This result together with the first one allow us to formulate the con-
dition of existence of random fields described by a given specification
in terms of the latter’s one-point elements only, that is, exactly in the
same terms as the well-known Dobrushin’s uniqueness condition, and so,
it becomes possible to formulate the problem of description of random
fields directly in terms of 1-specifications.

Note in addition, that as it will become clear from the subsequent
considerations of this work, these results can be extended to the case of
arbitrary n∈N.

Now we want to consider the problem of description outside of the
scope of strict positivity condition. First of all let us notice that under no
condition at all this description does not hold.

4.2. Counterexample

Let us fix some n∈N. If the description of specifications by means
of n-specifications held under no condition at all, then any n-specification
would describe a specification. The following example shows that it is not
true.

Example 12. Let X={0,1}, denote F(x) the function which counts
the number of elements equal to 1 in a configuration x on T ⊂Z

ν and
consider the ∞-system QQQ={Q•

�,�∈E} defined by

Qx
�(x)=




�{x≡0} if F(x)=0

�{x≡1} if F(x)�1 if |�|�2

�{x=0} if F(x)=0

1/2 if F(x)=1

�{x=1} if F(x)�2 if |�|=1.

It is not difficult to verify that QQQ is a specification. However, the
n-specification qn contained in QQQ does not describe a specification, since,
for example, the ∞-system Q̂QQ={Q̂•

�,�∈E} defined by

Q̂
x

�(x)=



�{x≡1} if |�|�n+2,

Qx
�(x) if |�|�n+1

is also a specification containing qn.
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So, it becomes evident that in order for the description of speci-
fications by means of n-specifications to hold, some kind of positivity
condition is necessary. The strict positivity is the most restrictive positivity
condition, since it does not permit zeros at all. A weaker positivity condi-
tion is the “weak positivity” which was already studied by the authors in
refs. 9 and 10.

4.3. Weak Positivity

The weak positivity condition for n-systems is formulated as follows.

Definition 13. Let n∈N∪∞. An n-system {Q•
�,�∈En} will be

called weakly positive, if there exist some element θ ∈X (called vacuum),
such that for any �∈En the configuration x ≡ θ is a p.p. of Q•

� under b.c.
varying on Z

ν\� and equal to ∅ outside.

Clearly, this condition on n-systems is really weaker than the strict
positivity one. It remains really weaker when applied to n-specifications
too. For instance, the n-specification contained in the specification QQQ from
Example 9 is weakly positive but not strictly positive.

Weakly positive specifications are well known in mathematical statis-
tical physics. For example, the specifications admitting Gibbsian descrip-
tion with a vacuum potential (which may take infinite values) are weakly
positive.

Note also, that under the condition of weak positivity, the consistency
conditions (2) from Definition 10 of 1-specification have a simpler equiv-
alent form given in the following proposition. The proof of this proposi-
tion is quite similar to those of Proposition 18 (see Section 6) and will be
omitted.

Proposition 14. A weakly positive 1-system {Q•
�,�∈E1} is 1-spe-

cification if and only if

Qxv◦
t (x) Qxx

s (y) Qxy
t (u◦) Qxu◦

s (v◦)= Qxu◦
s (y) Qxy

t (x) Qxx
s (v◦) Qxv◦

t (u◦)

for any t, s ∈Z
ν, x ∈Xt , y ∈Xs ,x ∈XZ

ν \ t \ s ,

and for u◦ ∈Xt such that u◦ = θ and v◦ ∈Xs such that v◦ = θ .

As we have already mentioned, the problem of description of specifi-
cations by means of n-specifications under the condition of weak positivity
was solved for n=1 in refs. 9 and 10. There it was shown, that any weakly
positive 1-specification describes a specification. It was equally shown, that
the weak positivity condition is coordinating, and under this condition the



290 Dachian and Nahapetian

quasilocality property is heritable. Moreover, as it will become clear from
the subsequent considerations of this work, these results can be extended
to the case of arbitrary n∈N.

So, the further study of the problem of description of specifications
by means of n-specifications reduces to determination of a weaker (in ideal
case the weakest) positivity condition, under which this description holds.
Such a condition is the very weak positivity condition obtained in the
present work.

4.4. Very Weak Positivity

Since the positivity points used in Definition 10 of 1-specification are
positivity points under boundary condition varying on one-point sets only,
it seems natural to consider the following positivity condition.

Definition 15. Let n∈N∪∞. An n-system {Q•
�,�∈En} will be

called too weakly positive, if for any �∈En, any s ∈Z
ν \� and any

x ∈XZ
ν \�\ s , there exists a p.p. of Q•

� under b.c. varying on s and equal
to x outside.

However, in accordance with its name, this condition is too weak in
order to solve the problem of description. Indeed, a too weakly positive
n-specification not necessarily describes a specification (for n=1 it is suffi-
cient to consider the 1-specification q1 from Example 12, and a similar
example can be easily constructed for arbitrary n∈N). Moreover, the too
weak positivity condition is not coordinating (for instance, the specifica-
tion QQQ from Example 12 is not too weakly positive). But what is the
matter?

The weak positivity and strict positivity conditions were shown to be
coordinating by concatenating positivity points thanks to Theorem 7. But
for the too weak positivity condition this approach does not work: if we
concatenate two positivity points under boundary conditions varying on
one-point sets, we obtain a positivity point under fixed (varying on the
empty set) boundary condition. So, we need to modify (strengthen) the
condition of too weak positivity in order to be able to correctly concat-
enate positivity points. This leads us to introduce the following positivity
condition.

Definition 16. Let n∈N∪∞. An n-system {Q•
�,�∈En} will be

called very weakly positive, if for any �∈En, any V ∈E such that V ⊂Z
ν \�

and any x ∈XZ
ν \�\V , there exists some p.p. u= θ(�,V,x) of Q•

� under
b.c. varying on V and equal to x outside.
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Clearly, this condition on n-systems is really weaker than the weak
positivity one. As shows the following example, it remains really weaker
when applied to n-specifications too.

Example 17. Let X={0,1}, let F be the function used in Exam-
ple 12 and consider the ∞-system QQQ={Q•

�,�∈E} defined by

Qx
�(x)=




�{x≡0} if F(x)=∞,

�{x≡1} if F(x)<∞.

It is not difficult to verify that QQQ is a specification, and that the n-spe-
cification contained in QQQ is very weakly positive but not weakly positive.

Note also, that as well as in the weakly positive case, under the con-
dition of very weak positivity, the consistency conditions (2) from Defi-
nition 10 of 1-specification have a simpler equivalent form given in the
following proposition which will be proved in Section 6.

Proposition 18. A very weakly positive 1-system {Q•
�,�∈E1} is

1-specification if and only if

Qxv◦
t (x) Qxx

s (y) Qxy
t (u◦) Qxu◦

s (v◦)= Qxu◦
s (y) Qxy

t (x) Qxx
s (v◦) Qxv◦

t (u◦)

for any t, s ∈Z
ν, x ∈Xt , y ∈Xs ,x ∈XZ

ν \ t \ s ,

and for u◦ = θ(t, s,x) and v◦ = θ(s, t,x).

(3)

In Section 5 we present the main results of this paper which estab-
lish the description of specifications by means of n-specifications under the
condition of very weak positivity.

5. MAIN RESULTS AND THEIR PROOFS

The main results of this work consist of the following three theorems.
The first one is that any very weakly positive n-specification describes

a specification.

Theorem 19. Let n∈N, and let q be a very weakly positive n-spe-
cification. Then there exists a unique specification containing q.

The second one is that the very weak positivity condition is
coordinating.
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Theorem 20. Let n∈N, let QQQ be a specification, and let q be the
n-specification contained in QQQ. Then QQQ is very weakly positive if and only
if q is very weakly positive.

The third one is that under the condition of very weak positivity, the
quasilocality property is heritable.

Theorem 21. Let n∈N, let QQQ be a very weakly positive specifica-
tion, and let q be the n-specification contained in QQQ. Then QQQ is quasilocal
if and only if q is quasilocal.

The proof of the second theorem is evident, since the necessity is triv-
ial, and the sufficiency directly follows from Theorem 7. The third theo-
rem will become clear in view of the proof of the first one. The proof of
the latter will be given in the end of this section and needs some auxil-
iary results which are of independent interest too. These results are given
below and will be proved in Section 6.

Proposition 22. Let �∈E and I ⊂�. A �-kernel Q•
� and an

I -kernel Q•
I are consistent in Dobrushin’s sense if and only if

Qx
�(xy) Qxx

I (v)= Qx
�(xv) Qxx

I (y)

for any x ∈X�\ I ,y,v ∈XI and x ∈XZ
ν \�.

(4)

The equivalent form given in this proposition looks simpler than the
original form of Dobrushin’s consistency condition and will be intensively
used in our considerations.

Proposition 23. Let n∈ (N \1)∪∞. An n-system QQQ={Q•
�,�∈En}

will be n-specification if and only if Q•
� and Q•

�\ t are consistent in
Dobrushin’s sense for any �∈En and t ∈�.

This proposition considerably reduces the set of Dobrushin’s con-
sistency conditions needed in order to check if an n-system is
n-specification.

The next and final theorem establish a general and useful property of
n-specifications.

Theorem 24. Let n∈ (N \1)∪∞ and let QQQ={Q•
�,�∈En} be an

n-system.
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(1) If QQQ is n-specification, then

Q
xuB

A (xA)Q
xxA

B (xB)Q
xxD

C (uC)Q
xuC

D (uD)

= Q
xuC

D (xD)Q
xxD

C (xC)Q
xxA

B (uB)Q
xuB

A (uA)

for any A,B,C,D such that

A∪B =C ∪D ∈En and A∩B =C ∩D =∅,

and for any x,u∈XA∪B and x ∈XZ
ν \A\B such that

uC is a p.p. of Q•
C under b.c. varying on D and equal to x outside.

(5)

In particular

Qxv
t (x) Qxx

�\ t (y) Qx
�(uv)= Qx

�(xy) Qxx
�\ t (v) Qxv

t (u)

for any �∈En, t ∈�, x,u∈Xt , y,v ∈X�\ t and x ∈XZ
ν \�.

(6)

(2) Conversely, if (6) is fulfilled, then QQQ is n-specification.

This theorem contains in particular the results of Theorem 8 and at
the same time characterizes n-specifications.

Now, we can at last prove the above stated theorem about description
of specifications.

Proof of Theorem 19. Let n∈N, and let q ={q•
�,�∈En} be a very

weakly positive n-specification.
In order to prove the theorem it is sufficient to show, that there exist

a unique (n+1)-specification QQQ containing q. Indeed, in this case QQQ is
clearly very weakly positive too, and so we can conclude the proof by
means of iteration.

First we prove the uniqueness: if there exists an (n+1)-specification
QQQ={Q•

�,�∈En+1} containing q, then it is the unique (n+1)-specification
containing q. For each �∈E let us fix some point �∈�. If |�|�n, then
clearly

Qx
�(x)= qx

�(x) . (7)

Now let |�|=n + 1 and x ∈XZ
ν \�, and let u∈X� be the configuration

defined by ut = θ(t,�\ t,x). Using (6) we have

Qx
�(x)= Qx

�(u)
q

xu�\ �

� (x�) q
xx�

�\ �(x�\ �)

q
xu�\ �

� (u�) q
xx�

�\ �(u�\ �)
. (8)
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Since
∑

y∈X�

Qx
�(y)=1, we get finally

Qx
�(u)=


 ∑

y∈X�

q
xu�\ �

� (y�) q
xy�

�\ �(y�\ �)

q
xu�\ �

� (u�) q
xy�

�\ �(u�\ �)




−1

. (9)

So, any (n+1)-specification containing q have necessarily the explicit form
given by the formulas (7), (8) and (9), and hence the uniqueness is proved.

To conclude the prove of the theorem, it remains to verify that the
(n+1)-system QQQ={Q•

�,�∈En+1} defined by (7), (8) and (9) is indeed an
(n+1)-specification. Applying Proposition 23 and taking into account that
q is n-specification, it is sufficient to verify Dobrushin’s consistency condi-
tion for Q•

� and q•
�\ t with |�|=n+1 only. Further, according to Propo-

sition 22 this condition becomes

Qx
�(xy) qxx

�\ t (v)= Qx
�(xv) qxx

�\ t (y). (10)

For the case t = �, using (8) we obtain

Qx
�(xy) qxx

�\ �(v) = Qx
�(u)

q
xu�\ �

� (x) q
xx

�\ �(y)

q
xu�\ �

� (u�) q
xx

�\ �(u�\ �)
qxx

�\ �(v)

= Qx
�(u)

q
xu�\ �

� (x) q
xx

�\ �(v)

q
xu�\ �

� (u�) q
xx

�\ �(u�\ �)
qxx

�\ �(y)

= Qx
�(xv) qxx

�\ �(y),

and so (10) is verified. Now, for the case of arbitrary t ∈�, it is sufficient
to show that the right-hand side of (8) does not depend on the choice of
� and apply the same argument.

This property is true due to the following chain of equalities

q
xu�\ �

� (x�) q
xx�

�\ �(x�\ �)

q
xu�\ �

� (u�) q
xx�

�\ �(u�\ �)
=

q
xu�\ �

� (x�) q
xx�u�\ �\ t
t (xt ) q

xx�xt

�\ �\ t (x�\ �\ t )

q
xu�\ �

� (u�) q
xx�u�\ �\ t
t (ut ) q

xx�xt

�\ �\ t (u�\ �\ t )

=
q

xu�\ t
t (xt ) q

xxtu�\ t \ �

� (x�) q
xxt x�

�\ t \ �(x�\ t \ �)

q
xu�\ t
t (ut ) q

xxtu�\ t \ �

� (u�) q
xxt x�

�\ t \ �(u�\ t \ �)

=
q

xu�\ t
t (xt ) q

xxt

�\ t (x�\ t )

q
xu�\ t
t (ut ) q

xxt

�\ t (u�\ t )
.
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The validity of these equalities in the case n�2 is guarantied by The-
orem 24. For n=1 the first and the third equalities are trivial, and the sec-
ond one follows from the definition of 1-specification. So, the theorem is
proved.

6. PROOF OF AUXILIARY RESULTS

Proof of Theorem 7. Let us suppose the contrary: there exists some
α ∈XT such that Qxα

� (uv)=0. Since Q•
� is consistent in Dobrushin’s sense

with Q•
I , according to Proposition 22 we can write

Qxα
� (uv) Qxαu

I (y)= Qxα
� (uy) Qxαu

I (v).

Taking into account that v is a positivity point, we have Qxαu
I (v)>0,

and hence Qxα
� (uy)=0 for any y ∈XI .

Similarly, for any y ∈XI , from the relation

Qxα
� (uy) Qxαy

J (x)= Qxα
� (xy) Qxαy

J (u),

we get Qxα
� (xy)=0 for any x ∈XJ .

So Qxα
� (z)=0 for any z∈X�, which contradicts the fact that Qxα

� is
a probability distribution.

Proof of Theorem 8. This theorem clearly follows from the first
assertion of Theorem 24 by substituting A=C = t , B =D = s, x =xy

and u=uv.

Proof of Proposition 18. The necessity is trivial. In order to prove
the sufficiency, let us first show that

Qxv◦
t (x) Qxx

s (y) Qxy
t (u) Qxu

s (v◦)= Qxu
s (y) Qxy

t (x) Qxx
s (v◦) Qxv◦

t (u)

for any t, s ∈Z
ν, x, u∈Xt , y ∈Xs ,x ∈XZ

ν \ t \ s ,

and for v◦ = θ(s, t,x).

(11)

Using (3) we obtain

Qxv◦
t (x) Qxx

s (y) Qxy
t (u◦) Qxu◦

s (v◦)= Qxu◦
s (y) Qxy

t (x) Qxx
s (v◦) Qxv◦

t (u◦),

Qxv◦
t (u) Qxu

s (y) Qxy
t (u◦) Qxu◦

s (v◦)= Qxu◦
s (y) Qxy

t (u) Qxu
s (v◦) Qxv◦

t (u◦).
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Suppose Qxu◦
s (y)>0. Then, if we cross-wise multiply these two equali-

ties and cancel identical strictly positive terms, we get the necessary rela-
tion. Now suppose Qxu◦

s (y)=0. From the same equalities we get clearly
Qxv◦

t (x) Qxx
s (y)=0 and Qxv◦

t (u) Qxu
s (y)=0, and so the property (11) is

proved.
Further, using (11) we obtain

Qxv◦
t (x) Qxx

s (y) Qxy
t (u) Qxu

s (v◦)= Qxu
s (y) Qxy

t (x) Qxx
s (v◦) Qxv◦

t (u),

Qxv◦
t (x) Qxx

s (v) Qxv
t (u) Qxu

s (v◦)= Qxu
s (v) Qxv

t (x) Qxx
s (v◦) Qxv◦

t (u),

and so, applying once more the same argument we can conclude the proof
of the proposition.

Proof of Proposition 22. First suppose that Q•
� and Q•

I are consis-
tent in Dobrushin’s sense. Then

Qx
�(xy) Qxx

I (v) = (Qx
�)

�\ I
(x) Qxx

I (y) Qxx
I (v)

= (Qx
�)

�\ I
(x) Qxx

I (v) Qxx
I (y)

= Qx
�(xv) Qxx

I (y),

and so we have (4).
Now suppose (4). For any v ∈XI we can write

Qx
�(xy) Qxx

I (v)= Qx
�(xv) Qxx

I (y).

Summing over v we obtain

Qx
�(xy)=

∑
v∈XI

Qx
�(xv) Qxx

I (y)= (Qx
�)

�\ I
(x) Qxx

I (y),

and so Q•
� and Q•

I are consistent in Dobrushin’s sense.

Proof of Proposition 23. The necessity is trivial. In order to prove
the sufficiency, it is sufficient to show that the consistency in Dobrushin’s
sense is transitive, that is, if J ⊂ I ⊂�∈E, and if a �-kernel Q•

� is con-
sistent with an I -kernel Q•

I which in its turn is consistent with a J -kernel
Q•

J , then Q•
� and Q•

J are also consistent.
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Let x ∈X�\J , let y,v ∈XJ and let x ∈XZ
ν \�. Since Q•

I is consistent
with Q•

J , using Proposition 22, we have

Qxx�\ I
I (xI \J y) Qxx

J (v)= Qxx�\ I
I (xI \J v) Qxx

J (y).

Hence

(Qx
�)

�\ I
(x�\ I ) Qxx�\ I

I (xI \J y) Qxx
J (v)

= (Qx
�)

�\ I
(x�\ I ) Qxx�\ I

I (xI \J v) Qxx
J (y).

Further, since Q•
� is consistent with Q•

I we obtain

Qx
�(xy) Qxx

J (v)= Qx
�(xv) Qxx

J (y),

and so, applying once more Proposition 22 we can conclude the proof of
the proposition.

Proof of Theorem 24. In order to carry out the proof we need the
following two simple lemmas.

Lemma 25. Let I,V ∈E such that I ∩ V =∅, put �= I ∪V , let
x ∈XZ

ν \�, and let a �-kernel Q•
� be consistent in Dobrushin’s sense with

an I -kernel Q•
I . If u is a p.p. of Q•

I under b.c. varying on V and equal to
x outside, then there exists a configuration γ ∈XV such that Qx

�(uγ )>0.

Proof. Let us suppose the contrary: for any configuration γ ∈XV we
have Qx

�(uγ )=0. Since Q•
� is consistent in Dobrushin’s sense with Q•

I , for
any α ∈XI and any γ ∈XV according to Proposition 22 we can write

Qx
�(uγ ) Qxγ

I (α)= Qx
�(αγ ) Qxγ

I (u),

and hence, taking into account that u is a positivity point we obtain the
equality Qx

�(αγ )=0.

So Qx
�(z)=0 for any z∈X�, which contradicts the fact that Qx

� is a
probability distribution.

Lemma 26. Let �∈E and I ⊂�, let x ∈XZ
ν \�, and let a �-ker-

nel Q•
� be consistent in Dobrushin’s sense with an I -kernel Q•

I . If for
some x ∈X�\ I and y,v ∈XI we have Qx

�(xy)=0 and Qx
�(xv)>0, then

Qxx
I (y)=0.
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Proof. Since Q•
� is consistent in Dobrushin’s sense with Q•

I , accord-
ing to Proposition 22 we can write

Qx
�(xy) Qxx

I (v)= Qx
�(xv) Qxx

I (y),

and so, taking into account that Qx
�(xy)=0 and Qx

�(xv)>0, we obtain
immediately Qxx

I (y)=0.

Now we turn to the proof of Theorem 24. First let us suppose that QQQ
is n-specification and prove the property (5). For convenience of notations
let us denote �=A∪B =C ∪D. According to Proposition 22, we have

Q
x

�(x) Q
xxA

B (uB)= Q
x

�(xAuB) Q
xxA

B (xB).

Multiplying this equality by Q
xuB

A (uA) and using Proposition 22 on
the right hand side, we obtain

Q
x

�(x) Q
xxA

B (uB) Q
xuB

A (uA)= Q
x

�(u) Q
xuB

A (xA) Q
xxA

B (xB). (12)

In the same way we have

Q
x

�(x) Q
xxD

C (uC) Q
xuC

D (uD)= Q
x

�(u) Q
xuC

D (xD) Q
xxD

C (xC). (13)

Suppose first Q
x

�(x)>0 and Q
x

�(u)>0. Then, if we cross-wise multi-
ply the equalities (12) and (13) and cancel identical strictly positive terms,
we get the relation claimed in (5).

Suppose now Q
x

�(x)=0 and Q
x

�(u)>0. Then from (12) and (13) we

have Q
xuB

A (xA) Q
xxA

B (xB)=0 and Q
xuC

D (xD) Q
xxD

C (xC)=0 correspondingly,
and so, the necessary relation is still valid. Similar considerations show
that it remains valid for the case Q

x

�(x)>0 and Q
x

�(u)=0.

Suppose finally Q
x

�(x)=0 and Q
x

�(u)=0. Since uC is a positivity
point, due to Lemma 25 there exists some configuration γ ∈XD such
that Q

x

�(uCγ )>0. The latter inequality together with Q
x

�(u)=0 implies

according to Lemma 26 that Q
xuC

D (uD)=0, and so, the left hand side of
the relation claimed in (5) vanishes. It remains to show that the right
hand side of this relation vanishes too. Indeed, if Q

x

�(uCxD)=0 then

taking into consideration that Q
x

�(uCγ )>0 and using Lemma 26 we

obtain Q
xuC

D (xD)=0, and if Q
x

�(uCxD)>0 then taking into account that

Q
x

�(x)=0 we get Q
xxD

C (xC)=0.
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So, the property (5) is established. In order to prove (6) it is sufficient
now to put A= t , B =�\ t , C =∅, D =�, x =xy and u=uv in (5), and
note that u∅ =∅ is indeed a p.p. of Q•

∅ under b.c. varying on � and equal
to x outside.

It remains to prove the second part of the theorem. Suppose (6) is
fulfilled, take some �∈En, t ∈�, x ∈Xt , y,v ∈X�\ t and x ∈XZ

ν \�, and
let us show that

Qx
�(xy) Qxx

�\ t (v)= Qx
�(xv) Qxx

�\ t (y). (14)

Suppose first Qxv
t (x)>0. Then, taking u=x in (6) and canceling the

term Qxv
t (x) we obtain (14).

Suppose now Qxy
t (x)>0. Then, interchanging the positions of y

and v in (6), taking u=x and canceling the term Qxy
t (x) we obtain (14).

Suppose finally Qxv
t (x)=0 and Qxy

t (x)=0. Taking in consideration
the first equality, we can show that the left hand side of the relation (14)
vanishes. Indeed, since Qxv

t is probability distribution, we can chose u∈Xt

such that Qxv
t (u)>0, and using (6) we clearly obtain Qx

�(xy) Qxx
�\ t (v)=0.

Similarly, the second equality implies that the right hand side of the rela-
tion (14) vanishes, and so this relation is proved.

Now, in order to conclude the proof of the theorem it remains to
apply consecutively Propositions 22 and 23.
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